Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
The Lancet regional health Western Pacific ; 2023.
Article in English | EuropePMC | ID: covidwho-2301322

ABSTRACT

Background COVID-19 pandemic research efforts have focused on disease phenotypes in adults. A distinct spectrum of illness has been documented in paediatric populations. We aimed to review paediatric intensive care unit (ICU) admissions in Australia, across differing variant predominant phases of the pandemic. Methods Data reported to the Short PeRiod IncideNce sTudy of Severe Acute Respiratory Infection (SPRINT-SARI) Australia, across 49 ICUs from February 2020 to June 2022 were extracted. We defined ‘child' as patients aged <12 years, ‘adolescent' as patients aged 12–17 years, and ‘young adult' as patients aged 18–25 years. Findings We identified 226 paediatric ICU admissions with COVID-19, representing 3.9% of ICU admissions across the study period. Comorbidity was present in 34.6% of children, 51.4% of adolescents, and 48.7% of young adults. The need for respiratory support was highest in young adults. While 28.3% of patients <18 years required invasive ventilation, in-hospital mortality in paediatric patients was 3.6%. During the Omicron period, there was an increase in the annualised incidence of age-specific COVID-19 ICU admissions per 100,000 population, albeit a decrease in the incidence per 1000 SARS-CoV-2 notifications. Interpretation This study demonstrated an appreciable burden of COVID-19 in paediatric patients. Adolescent patients presented phenotypically similar to young adults, however, illness severity was lower in younger cohorts. The Omicron phase of the pandemic demonstrated an increased age-specific population incidence of COVID-19 ICU admissions, albeit a reduced incidence when based on SARS-CoV-2 notifications. Funding SPRINT-SARI Australia is supported by the 10.13039/501100003921Department of Health, Commonwealth of Australia [Standing Deed SON60002733].

2.
Lancet Reg Health West Pac ; : 100763, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2301321

ABSTRACT

Background: COVID-19 pandemic research efforts have focused on disease phenotypes in adults. A distinct spectrum of illness has been documented in paediatric populations. We aimed to review paediatric intensive care unit (ICU) admissions in Australia, across differing variant predominant phases of the pandemic. Methods: Data reported to the Short PeRiod IncideNce sTudy of Severe Acute Respiratory Infection (SPRINT-SARI) Australia, across 49 ICUs from February 2020 to June 2022 were extracted. We defined 'child' as patients aged <12 years, 'adolescent' as patients aged 12-17 years, and 'young adult' as patients aged 18-25 years. Findings: We identified 226 paediatric ICU admissions with COVID-19, representing 3.9% of ICU admissions across the study period. Comorbidity was present in 34.6% of children, 51.4% of adolescents, and 48.7% of young adults. The need for respiratory support was highest in young adults. While 28.3% of patients <18 years required invasive ventilation, in-hospital mortality in paediatric patients was 3.6%. During the Omicron period, there was an increase in the annualised incidence of age-specific COVID-19 ICU admissions per 100,000 population, albeit a decrease in the incidence per 1000 SARS-CoV-2 notifications. Interpretation: This study demonstrated an appreciable burden of COVID-19 in paediatric patients. Adolescent patients presented phenotypically similar to young adults, however, illness severity was lower in younger cohorts. The Omicron phase of the pandemic demonstrated an increased age-specific population incidence of COVID-19 ICU admissions, albeit a reduced incidence when based on SARS-CoV-2 notifications. Funding: SPRINT-SARI Australia is supported by the Department of Health, Commonwealth of Australia [Standing Deed SON60002733].

3.
Intern Med J ; 2022 Jul 16.
Article in English | MEDLINE | ID: covidwho-2275178

ABSTRACT

BACKGROUND: Vaccination has been shown to be highly effective in preventing death and severe disease from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Currently, few studies have directly compared vaccinated and unvaccinated patients with severe COVID-19 in the intensive care unit (ICU). AIMS: To compare the clinical characteristics and outcomes of vaccine recipients and unvaccinated patients with SARS-CoV-2 infection admitted to the ICU in a nationwide setting. METHODS: Data were extracted from the Short PeRiod IncideNce sTudy of Severe Acute Respiratory Infection Australia, in 57 ICU during Delta and Omicron predominant periods of the COVID-19 pandemic. The primary outcome was inhospital mortality. Secondary outcomes included duration of mechanical ventilation, ICU length of stay, hospital length of stay and ICU mortality. RESULTS:  There were 2970 patients admitted to ICU across participating sites from 26 June 2021 to 8 February 2022; 1134 (38.2%) patients were vaccine recipients, and 1836 (61.8%) patients were unvaccinated. Vaccine recipients were older, more comorbid and less likely to require organ support. Unadjusted inhospital mortality was greater in the vaccinated cohort. After adjusting for age, gender and comorbid status, no statistically significant association between inhospital or ICU mortality, and vaccination status, was apparent. CONCLUSION: We found COVID-19 infection can cause severe disease and death in vaccine recipients, though comorbid status and older age were significant contributors to mortality. Organ support requirements and the number of deaths were highest in the unvaccinated cohort.

4.
PLoS One ; 17(10): e0276509, 2022.
Article in English | MEDLINE | ID: covidwho-2089433

ABSTRACT

OBJECTIVE(S): To use machine learning (ML) to predict short-term requirements for invasive ventilation in patients with COVID-19 admitted to Australian intensive care units (ICUs). DESIGN: A machine learning study within a national ICU COVID-19 registry in Australia. PARTICIPANTS: Adult patients who were spontaneously breathing and admitted to participating ICUs with laboratory-confirmed COVID-19 from 20 February 2020 to 7 March 2021. Patients intubated on day one of their ICU admission were excluded. MAIN OUTCOME MEASURES: Six machine learning models predicted the requirement for invasive ventilation by day three of ICU admission from variables recorded on the first calendar day of ICU admission; (1) random forest classifier (RF), (2) decision tree classifier (DT), (3) logistic regression (LR), (4) K neighbours classifier (KNN), (5) support vector machine (SVM), and (6) gradient boosted machine (GBM). Cross-validation was used to assess the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of machine learning models. RESULTS: 300 ICU admissions collected from 53 ICUs across Australia were included. The median [IQR] age of patients was 59 [50-69] years, 109 (36%) were female and 60 (20%) required invasive ventilation on day two or three. Random forest and Gradient boosted machine were the best performing algorithms, achieving mean (SD) AUCs of 0.69 (0.06) and 0.68 (0.07), and mean sensitivities of 77 (19%) and 81 (17%), respectively. CONCLUSION: Machine learning can be used to predict subsequent ventilation in patients with COVID-19 who were spontaneously breathing and admitted to Australian ICUs.


Subject(s)
COVID-19 , Noninvasive Ventilation , Adult , Humans , Middle Aged , Aged , COVID-19/epidemiology , COVID-19/therapy , Critical Illness/therapy , Australia/epidemiology , Machine Learning
5.
Aust Crit Care ; 2022 May 23.
Article in English | MEDLINE | ID: covidwho-1866894

ABSTRACT

BACKGROUND: Internationally, diabetes mellitus is recognised as a risk factor for severe COVID-19. The relationship between diabetes mellitus and severe COVID-19 has not been reported in the Australian population. OBJECTIVE: The objective of this study was to determine the prevalence of and outcomes for patients with diabetes admitted to Australian intensive care units (ICUs) with COVID-19. METHODS: This is a nested cohort study of four ICUs in Melbourne participating in the Short Period Incidence Study of Severe Acute Respiratory Infection (SPRINT-SARI) Australia project. All adult patients admitted to the ICU with COVID-19 from 20 February 2020 to 27 February 2021 were included. Blood glucose and glycated haemoglobin (HbA1c) data were retrospectively collected. Diabetes was diagnosed from medical history or an HbA1c ≥6.5% (48 mmol/mol). Hospital mortality was assessed using logistic regression. RESULTS: There were 136 patients with median age 58 years [48-68] and median Acute Physiology and Chronic Health Evaluation II (APACHE II) score of 14 [11-19]. Fifty-eight patients had diabetes (43%), 46 patients had stress-induced hyperglycaemia (34%), and 32 patients had normoglycaemia (23%). Patients with diabetes were older, were with higher APACHE II scores, had greater glycaemic variability than patients with normoglycaemia, and had longer hospital length of stay. Overall hospital mortality was 16% (22/136), including nine patients with diabetes, nine patients with stress-induced hyperglycaemia, and two patients with normoglycaemia. CONCLUSION: Diabetes is prevalent in patients admitted to Australian ICUs with severe COVID-19, highlighting the need for prevention strategies in this vulnerable population.

7.
Front Med (Lausanne) ; 8: 738086, 2021.
Article in English | MEDLINE | ID: covidwho-1441122

ABSTRACT

Background: In a disease that has only existed for 18 months, it is difficult to be fully informed of the long-term sequelae of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. Evidence is growing that most organ systems can be affected by the virus, causing severe disabilities in survivors. The extent of the aftermath will declare itself over the next 5-10 years, but it is likely to be substantial with profound socio-economic impact on society. Methods: This is an international multi-center, prospective long-term follow-up study of patients who developed severe coronavirus disease-2019 (COVID-19) and were admitted to Intensive Care Units (ICUs). The study will be conducted at international tertiary hospitals. Patients will be monitored from time of ICU discharge up to 24 months. Information will be collected on demographics, co-existing illnesses before ICU admission, severity of illness during ICU admission and post-ICU quality of life as well as organ dysfunction and recovery. Statistical analysis will consist of patient trajectories over time for the key variables of quality of life and organ function. Using latent class analysis, we will determine if there are distinct patterns of patients in terms of recovery. Multivariable regression analyses will be used to examine associations between baseline characteristics and severity variables upon admission and discharge in the ICU, and how these impact outcomes at all follow-up time points up to 2 years. Ethics and Dissemination: The core study team and local principal investigators will ensure that the study adheres to all relevant national and local regulations, and that the necessary approvals are in place before a site may enroll patients. Clinical Trial Registration:anzctr.org.au: ACTRN12620000799954.

9.
Ann Am Thorac Soc ; 18(8): 1380-1389, 2021 08.
Article in English | MEDLINE | ID: covidwho-999862

ABSTRACT

Rationale: Both 2009 pandemic influenza A (H1N1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are transmitted by respiratory secretions and in severe cases result in a viral pneumonitis, requiring intensive care unit (ICU) admission. However, no studies have compared the clinical characteristics and outcomes of such patients. Objectives: To report and compare the demographic characteristics, treatments, use of critical care resources, and outcomes of patients admitted to an Australian ICU with H1N1 influenza during the winter of 2009, and SARS-CoV-2 during the winter of 2020. Methods: This was a multicenter project, using national data from previous and ongoing epidemiological studies concerning severe acute respiratory infections in Australia. All ICUs admitting patients with H1N1 or coronavirus disease (COVID-19) were included and contributed data. We compared clinical characteristics and outcomes of patients with H1N1 admitted to ICU in the winter of 2009 versus patients with COVID-19 admitted to ICU in the winter of 2020. The primary outcome was in-hospital mortality. Potential years of life lost (PYLL) were calculated according to sex-adjusted life expectancy in Australia. Results: Across the two epochs, 861 patients were admitted to ICUs; 236 (27.4%) with COVID-19 and 625 (72.6%) with H1N1 influenza. The number of ICU admissions and bed-days occupied were higher with 2009 H1N1 influenza. Patients with COVID-19 were older, more often male and overweight, and had lower Acute Physiology and Chronic Health Evaluation II scores at ICU admission. The highest age-specific incidence of ICU admission was among infants (0-1 yr of age) for H1N1, and among the elderly (≥65 yr) for COVID-19. Unadjusted in-hospital mortality was similar (11.5% in COVID-19 vs. 16.1% in H1N1; odds ratio, 0.68 [95% confidence interval (95% CI), 0.42-1.06]; P = 0.10). The PYLL was greater with H1N1 influenza than with COVID-19 at 154.1 (95% CI, 148.7-159.4) versus 13.6 (95% CI, 12.2-15.1) PYLL per million inhabitants. Conclusions: In comparison with 2009 H1N1 influenza, COVID-19 admissions overwinter in Australia resulted in fewer ICU admissions, and lower bed-day occupancy. Crude in-hospital mortality was similar, but because of demographic differences in affected patients, deaths due to 2009 H1N1 influenza led to an 11-fold increase in the number of PYLL in critically ill patients.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Aged , Australia/epidemiology , Critical Care , Critical Illness , Humans , Infant , Influenza, Human/epidemiology , Influenza, Human/therapy , Intensive Care Units , Male , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL